ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО МАТЕМАТИКЕ МУНИЦИПАЛЬНЫЙ ЭТАП 10 класс

Решения задач.

$$10.1.$$
 Обозначим $2^{2023}=$ n. Получим $\frac{n+1}{2n+1}-\frac{2n+1}{4n+1}=\frac{(n+1)(4n+1)-(2n+1)^2}{(2n+1)(4n+1)}=$ $\frac{4n^2+5n+1-4n^2-4n-1}{(2n+1)(4n+1)}=\frac{n}{(2n+1)(4n+1)}>0$ для любого n.

Otbet:
$$\frac{2^{2023}+1}{2^{2024}+1} > \frac{2^{2024}+1}{2^{2025}+1}$$
.

10.2. Обозначим первоначальное число станков через x, а число оставшихся станков через n. Условие задачи приводит k уравнению: $x \cdot \frac{100-n}{100} = n$. Преобразуем это уравнение k виду: $x = \frac{10000}{100-n} - 100$.

Для того, чтобы найти наименьшее значение x, число 100 - n надо брать наибольшим. Методом полного перебора найдем все делители числа 10000, меньшие 100. Получим 100 - n = 80. Откуда x = 25.

Ответ: 25 станков.

10.3.
$$2x^2 + y^2 = 2xy + 4x$$
;
 $x^2 - 4x + 4 + y^2 - 2xy + x^2 = 4$;
 $(x-2)^2 + (x-y)^2 = 4$.

Если сумма двух квадратов целых чисел равна 4, то один из квадратов равен 4, а другой -0.

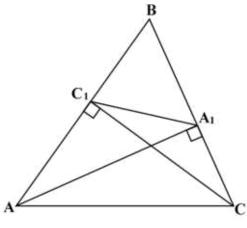
Пусть $(x-2)^2 = 0$, тогда x = 2 и $(2-y)^2 = 4$. Откуда получаем, что 2 - y = 2 или 2 - y = -2, то есть, y = 0 или y = 4. Таким образом, получаем два первых решения: (2;0), (2;4).

Пусть $(x-2)^2 = 4$, тогда x = 4 или x = 0. Откуда получаем, что x - y = 0, что дает ответы: (0;0) (4;4)

Таким образом: (2;0), (2;4), (0;0), (4;4).

Ответ: (2;0), (2;4), (0;0), (4;4).

10.4. Пусть A_1 и C_1 – основания высот треугольника ABC, опущенных из вершин A и C соответственно, \bot B = β , а R – радиус описанной окружности.



Независимо от вида треугольника ABC треугольник A_1BC_1 ему подобен. Заметим, что треугольники AA_1B и CC_1B прямоугольные с углом при вершине B, равным β , если β <90°, и равным 180° - β , если β > 90°.

Во всех случаях $\frac{A_1C_1}{AC} = \frac{A_1B}{AB} = \frac{C_1B}{BC} = |cos\beta|$. Так как по условию $A_1C_1 = \frac{R}{2}$, а по теореме синусов $AC = 2R\sin\beta$, получаем уравнение

 $2 \sin \beta \cdot |\cos \beta| = \frac{1}{2}$. (*)

Если β <90°, то из (*) sin $2\beta = \frac{1}{2}$, откуда $2\beta = 30$ ° или $2\beta = 150$ °. То есть $\beta = 15$ ° или $\beta = 75$ °.

Если β > 90°, то получаем уравнение $\sin 2\beta = \frac{1}{2}$, откуда $2\beta = 210^\circ$ или $2\beta = 330^\circ$.

Ответ: 15°, 75°, 105°, 165°

10.5. Составим таблицу 7 х 7, в каждой клетке которой напишем число, равное количеству допустимых путей, которыми король может дойти до этой клетки из левого нижнего угла. Заполнять таблицу будем постепенно. Сначала левый столбец и нижнюю строку единицами. Кроме того, в центральной клетке ставим ноль (по условию задачи). Далее заполняем второй слева столбец и вторую снизу строку и т.д. по следующему правилу: в очередной клетке ставим сумму чисел, стоящих в трех соседних клетка — снизу, слева и по диагонали (снизу слева). В результате получим таблицу. Ответом служит число, стоящее в правом верхнем углу.

1	13	85	314	848	2078	5020
1	11	61	168	366	864	2078
1	9	41	66	132	366	848
1	7	25	0	66	168	314
1	5	13	25	41	61	85
1	3	5	7	9	11	13
1	1	1	1	1	1	1

Ответ: 5020